FLAVONOIDS OF *GARDENIA CRAMERII* AND *G. FOSBERGII* BUD EXUDATES

A. A. LESLIE GUNATILAKA,* SARATH R. SIRIMANNE, SUBRAMANIAM SOTHEESWARAN* and H. T. BADRA SRIYANI

Department of Chemistry, University of Peradeniya, Peradeniya, Sri Lanka

(Received 13 April 1981)

Key Word Index—Gardenia cramerii; G. fosbergii; Rubiaceae; bud exudates; 5,5'-dihydroxy-6,7,2',3'-tetramethoxyflavone; 5,3',5'-trihydroxy-3,6,7,4'-tetramethoxyflavone; 5-hydroxy-6,7,3',4',5'-pentamethoxyflavone.

Abstract—From the bud exudates of Gardenia cramerii and G. fosbergii, two species endemic to Sri Lanka, a new flavonoid with an unusual B-ring oxidation pattern, 5,5'-dihydroxy-6,7,2',3'-tetramethoxyflavone, was characterized. Two other rare flavonoids, 5,3',5'-trihydroxy-3,6,7,4'-tetramethoxyflavone and 5-hydroxy-6,7,3',4',5'-pentamethoxyflavone were also isolated from both Gardenia species.

In continuation of our studies [1] on the flavonoids of *Gardenia* bud exudates, we now report the isolation and characterization of several polyoxygenated flavonoids from two *Gardenia* species endemic to Sri Lanka namely, *G. cramerii* and *G. fosbergii*.

The hot chloroform extract of the bud exudate of G. cramerii was separated into Na₂CO₃ soluble and insoluble fractions. The former contained terpene acids and flavonoids. Terpene acids were removed by washing with 10% borax solution. The borax-insoluble and Na₂CO₃-insoluble fractions on repeated preparative TLC gave three pigments. The least polar pigment was identified as 5-hydroxy-6,7,3',4',5'-pentamethoxyflavone (1). The most polar pigment was identical with 5,3',5'-trihydroxy-3,6,7,4'-tetramethoxyflavone **(2)**. Both these flavonoids rare and have been reported previously by us from G. fosbergii [1]. The next polar pigment, mp 218° was found to be a new flavonoid, 3, which had the molecular formula, C₁₉H₁₈O₈ (high-resolution mass spectrometry). The UV and IR data were characteristic of a flavone. The 'H NMR data in-

$$\begin{array}{c} R^2 \\ R^3 \\ R^5 \\ R^6 \\ MeO \\ OH \\ O \end{array}$$

1
$$R^4 = R^5 = R^6 = OMe$$
; $R^1 = R^2 = R^3 = H$
2 $R^1 = R^5 = OMe$; $R^4 = R^6 = OH$; $R^2 = R^3 = H$
3 $R^3 = R^4 = OMe$; $R^6 = OH$; $R^1 = R^2 = R^5 = H$
4 $R^1 = R^4 = R^5 = OMe$; $R^6 = OH$; $R^2 = R^3 = H$
5 $R^1 = R^2 = OMe$; $R^5 = OH$; $R^3 = R^4 = R^6 = H$

dicated it to be a tetramethoxy compound with a chelated hydroxyl group. The aromatic region in the NMR spectrum of 3 in acetone- d_6 had singlets at δ 7.2(2H), 6.85(1H) and 6.75(1H) whereas in CDCl₃ it had two singlets at δ 6.6(1H), 6.53(1H) and doublets at δ 6.9(1H), 7.2(1H). The doublets were found to be due to a *meta*-coupled aromatic system (J = 2 Hz). Comparison of these data with the NMR data in CDCl₃ of other flavonoids isolated by us earlier [1] showed that the singlets at δ 6.6(1H) and at δ 6.53(1H) were due to the protons at C-8 and C-3, respectively, of the flavonoid moiety. These data indicate that the A-ring of the flavonoid is oxygenated at C-5, C-6 and C-7. The meta-coupled protons appearing at δ 7.2(1H) and 6.9(1H) in the ¹H NMR spectrum of 3 in CDCl₃ must be from the B-ring of the flavonoid moiety. The B-ring protons of 5,5'-dihydroxy-3,6,7,3',4'-pentamethoxyflavone (4) appeared as a 2H-singlet in ¹H NMR spectra of 4 taken in either CDCl₃ or acetone-d₆. Monomethyl 3 was found to be different (depressed mp) from 1, indicating an oxygen substitution in the flavonoid B-ring for 3 different from that for 4. These data show that 3 has an unusual oxygen substitution in the B-ring. One of the *meta*-coupled protons experiences a long-range coupling effect from an ortho-methoxy group. On the basis of the above information, 3 is characterized as 5,5'-dihydroxy-6,7,2',3'-tetramethoxyflavone.

From the bud exudate of G. fosbergii [1], five flavonoids were identified: 5-hydroxy-6,7,3',4',5'-pentamethoxyflavone (1), 5,3',5'-trihydroxy-3,6,7,4'-tetramethoxyflavone (2), 5,4'-dihydroxy-3,6,7,8-tetramethoxyflavone (5) and two other flavonoids in small amounts. One of the minor flavonoids was shown to be identical with 3.

EXPERIMENTAL

The bud exudates were collected from the Gardenia species growing in Batticaloa, Sri Lanka. Plant material was

^{*}To whom correspondence should be addressed.

verified by Dr. D. Thiruvengadam (Mauritius). Mps are uncorr. The identities of all known compounds were confirmed by direct comparison with authentic samples (mmp, co-TLC and IR).

Extraction and fractionation of the bud exudate of G. cramerii. The bud exudate (37 g) was extracted with hot CHCl₃ in a Soxhlet apparatus for 12 hr. The solvent was removed under red. pres. to give a yellow gum. This extract (29 g) was partitioned between Et₂O and 10% aq. Na₂CO₃. The usual work-up gave acidic (20 g) and non-acidic (3.5 g) fractions. The acidic fraction in CH₂Cl₂ was washed with 10% aq. Na₂B₄O₇ soln and the organic layer on evapn gave a yellow gum (0.5 g). The Na₂CO₃-insoluble and Na₂B₄O₇-insoluble fractions were separated into their constituent pigments as described below.

The Na₂CO₃-insoluble fraction (200 mg) was separated by prep. TLC (Si gel) using CHCl3-MeOH (9:1) into three pigments. The least polar pigment (58 mg) had mp 195-197°. It showed an orange-red colour with Mg-conc HCl and gave a green colour with neutral FeCl₃. It was identified as 1. The most polar compound was found to have a mp 176-178° and was identical with 2. The compound with intermediate polarity was re-purified by prep. TLC to give a light yellow crystalline solid (22 mg), 3, mp 218° (from petrol-MeOH). It gave a red colour with Mg-conc HCl, olive green colour with FeCl₃ and a greenish blue colour with Gibbs reagent. IR ν_{max} 3360, 2910, 1660–1650, 1600, 1490–1450, 1420, 1360, 1280, 1250, 1200, 1100, 1010 and 825 cm⁻¹. UV $\lambda_{\text{max}}^{\text{MeOH}}$ (log ϵ) 238 (4.11), 277 (4.00), and 330 (4.12); NaOAc 278 (4.19), 331 (4.30); H₃BO₃-NaOAc 278 (4.19), 331 (4.30); AlCl₃ 282 (3.92), 298 (3.92), 354 (4.05); AlCl₃-HCl 287 (3.92), 332 (3.90), 352 (4.05); ¹H NMR δ (CDCl₃) 3.82 (3H, s, -OMe), 3.93 (3H, s, -OMe), 3.96 (3H, s, -OMe), 4.0 (3H, s, -OMe), 6.53 (1H, s, 3-H), 6.6 (1H, s, 8-H), 6.9 (1H, d, J = 2 Hz, 4'-H) and 7.2 (1H, d, J = 2 Hz, 6'-H); δ (acetone- d_6) 3.8 (3H, s, -OMe), 3.9 (3H, s, -OMe), 4.0 (6H, s, -OMe), 6.75 (1H, s, 3-H), 6.85 (1H, s, 8-H) and 7.2 (2H, s, 4'-H and 6'-H); δ (DMSO- d_6) 3.75 (6H, s, -OMe), 3.9 (6H, s, -OMe), 6.92 (1H, s, 3-H), 6.96 (1H, s, 8-H), 7.2 (2H, s, 4'-H and 6'-H). MS m/z 374 (M⁺ 100%), 359, 345, 331, 197, 181 and 153. M⁺ 374.101 high-resolution MS, calc. for $C_{19}H_{18}O_8$, 374.102.

Methylation of 3. Diazomethane methylation gave monomethyl 3, mp 189-191°, which was found to be different from 1 since it gave a depressed mmp.

Extraction and fractionation of the bud exudate of G. fosbergii. The bud exudate (65 g) was extracted with CHCl₃ in a Soxhlet apparatus for 12 hr. The CHCl₃ extract on evapn of the solvent yielded a yellow gum (26 g) which was partitioned with Na₂CO₃ (10%) and Et₂O. Usual work-up gave the acidic (18 g) and non-acidic (5 g) fractions. The Na₂CO₃-insoluble fraction was re-extracted with EtOH [1]. The portion which dissolved was again extracted with CH₂Cl₂. The CH₂Cl₂-soluble fraction was chromatographed over Si gel and the column eluted with CH₂Cl₂-MeOH (99:1) giving a mixture of five flavonoids which were separated by prep. TLC. 200 mg of the mixture gave 1 (25 mg), mp 203–204°; 2 (90 mg), mp 176–178°; 5 (20 mg), mp 223–225°, 3 (15 mg) and another flavone (5 mg) mp 227–229°.

Acknowledgements—We thank Professor S. Balasubramaniam and Dr. D. Thiruvengadam for collecting and identifying the bud exudates and Dr. T. Nakanishi for providing mass spectral data. A research grant from the National Science Council of Sri Lanka is gratefully acknowledged.

REFERENCE

1. Gunatilaka, A. A. L., Sirimanne, S. R., Sotheeswaran, S. and Nakanishi, T. (1979) J. Chem. Res. (S) 216.